miRNAs involved in LY6K and estrogen receptor α contribute to tamoxifen-susceptibility in breast cancer
نویسندگان
چکیده
Estrogen receptor-alpha (ERα) is a clinically important therapeutic target for breast cancer. However, tumors that lose ERα are less responsive to anti-estrogens such as tamoxifen. MicroRNAs (miRNAs) are small RNAs that regulate expression of their target gene and dysregulations of miRNA has been identified in many diseases including human cancer. However, only a few miRNAs associated with tamoxifen resistance has been reported. In this study, we found that lymphocyte antigen 6 complex (LY6K), which is a member of the Ly-6/μPAR superfamily and related to breast cancer progression and metastasis, is inversely correlated with ERα expression. We, for the first time, found miRNAs involved in the regulatory molecular mechanism between ERα and LY6K and related to tamoxifen susceptibility in breast cancer. miR-192-5p, induced by LY6K, downregulates ERα directly and induced tamoxifen resistance in ERα-positive breast cancer cells. In addition, re-expression of ERα in ERα-negative breast cancer cells increased miR-500a-3p expression and directly inhibits LY6K expression. Ectopic expression of miR-500a-3p sensitized ERα-negative cells to tamoxifen by increasing apoptosis. Finally, we observed an inverse correlation between LY6K and ERα in primary breast cancer samples. We found that patients with recurrence showed high expression of miR-192-5p after tamoxifen treatments. In addition, expression of miR-500a-3p was significantly correlated to survival outcome. As miRNAs involved in the regulatory mechanism between LY6K and ERα can affect tamoxifen resistance, downregulating miR-192-5p or re-expressing miR-500a-3p could be a potential therapeutic approach for treating tamoxifen resistant patients.
منابع مشابه
ADENOSINE DEAMINASE ACTIVITY IN ESTROGEN RECEPTOR POSITIVE AND NEGATIVE HUMAN BREAST CANCER CELL LINES
ABSTRACT Background: The aims of this study were to assay the activity of adenosine deaminase (ADA) in estrogen receptor positive (MCF-7) and negative (MDA-MB468) breast cancer cell lines. Methods: MDA-MB468 and MCF-7 breast cancer cell lines were cultured in complete medium, striped serum with and without 0.0 1~-LM diethylstilbestrol (DES), complete medium in the presence and absence of 111M ...
متن کاملBioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer
Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...
متن کاملBioinformatics-Based Prediction of FUT8 as a Therapeutic Target in Estrogen Receptor-Positive Breast Cancer
Abstract Introduction: Estrogen receptor-positive (ER-positive) breast cancer is a subgroup of breast tumors that is more likely to respond to hormone therapy. ER-positive and ER- negative breast cancers tend to show different patterns of metastasis because of different signaling cascade and genes that are activated by estrogen response. Genetic factors can contribute to high rates of metastas...
متن کاملP-195: Thymoquinone Increases Efficacy of Tamoxifen Induced Apoptosis in Human Breast Cancer MCF-7 Cells: In Vitro
Background: The objective of this study is to evaluate combined effect of Thymoquinone (The main active component of black seeds) with Tamoxifen drug on apoptosis of human breast cancer MCF-7 cells (Noninvasive human breast cancer cell line, estrogen receptor positive). Materials and Methods: The human breast cancer MCF- 7 cells were treated with Tamoxifen (2 μM) alone or in combination with Th...
متن کاملEffect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells
Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...
متن کامل